Linear Analysis Archives - ESRD https://www.esrd.com/product-tag/linear-analysis/ Engineering Software Research and Development, Inc. Thu, 12 Sep 2024 15:19:35 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://www.esrd.com/wp-content/uploads/cropped-SC_mark_LG72ppi-32x32.jpg Linear Analysis Archives - ESRD https://www.esrd.com/product-tag/linear-analysis/ 32 32 StressCheck Tutorial: New Assembly Meshing/Auto Contact Features in StressCheck v12.0 https://www.esrd.com/resource-library/product/stresscheck-tutorial-new-assembly-meshing-auto-contact-features-in-stresscheck-v12-0/ Wed, 11 Sep 2024 20:11:43 +0000 https://www.esrd.com/?post_type=product&p=32645 A new and powerful assembly automeshing/automatic contact detection feature is now available with the release of StressCheck v12.0. Before automeshing an assembly of close-contacting solid bodies, users may enable the "Assembly Meshing" option to enforce element face matching between neighboring surfaces (to within a user-specified tolerance). Once the solid bodies have been automeshed, StressCheck will automatically create contact zones between matched neighboring element faces and assign contact pairs via the new Auto Contact constraint method to the current constraint ID (if existing, otherwise StressCheck will use "AUTO_CONT" as the constraint ID). Individual contact pairs generated via the Auto Contact method may specified as Contact (the default, traditional multi-body contact), Fused (if element face matching was 100% successful, matched element faces are bonded) or Free (matched element faces are free). Note that if individual contact pairs are specified as Contact, and a parameter is not used for the Contact Constant, the Contact Constant value is computed from the assigned material property data and will be updated if one or more of the material properties are modified. This tutorial revisits a previous 3D multi-body contact example and utilizes assembly automeshing/automatic contact detection to significantly reduce the amount of setup time for multi-body contact analysis. The tutorial also demonstrates how refining the automesh (or updating a parameter value which triggers a re-mesh) will result in the re-generation of the contact zones/contact pairs.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Tutorial: New Mesh Seeding Features in StressCheck v12.0 https://www.esrd.com/resource-library/product/stresscheck-tutorial-new-mesh-seeding-features-in-stresscheck-v12-0/ Wed, 11 Sep 2024 19:41:16 +0000 https://www.esrd.com/?post_type=product&p=32641 A new and powerful mesh seeding feature is now available with the release of StressCheck v12.0. Before automeshing a solid body, users may associate manually generated nodes and/or manually meshed elements with that solid body. During the automeshing process, these nodes and/or elements will be incorporated in the resulting mesh. If users require refinement of the seeded mesh, h-Discretization methods are supported. Note that the automesh must be re-generated after h-Discretizing the seeded mesh. This tutorial revisits the example from the Getting Started Guide and utilizes seeded hand-meshed elements in the region of interest. The hand-meshed elements are then h-Discretized and the automesh is updated.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Demo: Computing 2D and 3D Stress Concentrations for an Infinite Plate with Hole in Tension https://www.esrd.com/resource-library/product/stresscheck-demo-computing-2d-and-3d-stress-concentrations-for-an-infinite-plate-with-hole-in-tension/ Wed, 24 May 2023 15:23:34 +0000 https://www.esrd.com/?post_type=product&p=28251 Abstract: using numerical simulation to determine the minimum width-to-diameter ratio (W/d) in 2D, and the minimum thickness-to-diameter ratio (thk/d) in 3D, required to represent the stress concentration factor (Kt) of a plate with hole in tension to within 1% error as compared to the theoretically-derived Kt = 3 for the case of an infinite plate with a circular hole (W/d=∞) under uniaxial loading.]]>

Hit the play button to view this video. You may maximize the video to fit your screen.

]]>
StressCheck Tutorial: Importation and Assignment of Point Displacements & Rotations via the Fit-Auto Method https://www.esrd.com/resource-library/product/stresscheck-tutorial-importation-and-assignment-of-point-displacements-rotations-via-the-fit-auto-method/ Fri, 17 Mar 2023 15:58:28 +0000 https://www.esrd.com/?post_type=product&p=27471 Abstract: demonstration of 1) how to format an ASCII file containing nine (9) columns of tabular point displacement/rotation data (X, Y, Z, Ux, Uy, Uz, Rx, Ry, Rz) for importation into StressCheck, and 2) how to assign the imported point constraint data to the surfaces of an imported solid (via the Fit-Auto constraint method) for a global-local analysis. For more details, consult Point Displacements/Rotations Implementation.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Tutorial: Improving Multi-Body Contact Efficiency and Quality via Hexa/Penta Boundary Layer Refinement https://www.esrd.com/resource-library/product/stresscheck-tutorial-improving-multi-body-contact-efficiency-and-quality-via-hexa-penta-boundary-layer-refinement/ Fri, 17 Mar 2023 15:41:01 +0000 https://www.esrd.com/?post_type=product&p=27468 Abstract: demonstration of how refining surfaces in contact with at least one hexa-dominant mesh layer (via the mixed Boundary Layer automesh method) improves the outcomes of multi-body contact solutions. The mixed Boundary Layer automesh method is available as of StressCheck v11.1. For more details, refer to MeshSim Automesh Generation Methods.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
Webinar: Benefits of Mixed Meshing for Multi-Body Contact Applications https://www.esrd.com/resource-library/product/webinar-benefits-of-mixed-meshing-for-multi-body-contact-applications/ Mon, 13 Mar 2023 20:42:18 +0000 https://www.esrd.com/?post_type=product&p=27441 [vc_row][vc_column width="1/2"][vc_message message_box_color="peacoc" icon_fontawesome="fa fa-lightbulb-o"]March 13, 2023 @ 1:00 pm EST[/vc_message][vc_column_text]Strategies for incorporating advanced mixed (hexa/penta) automeshing techniques for improved quality and efficiency of 3D multi-body contact applications will be explored.[/vc_column_text][vc_cta h2="" add_button="right" btn_title="WATCH NOW" btn_color="danger" btn_link="url:%23recording|||"]This webinar is now available to watch on-demand.[/vc_cta][/vc_column][vc_column width="1/2"] [caption id="attachment_27442" align="alignnone" width="1166"] 3D Splice Plate problem definition (top right), mixed mesh taking advantage of symmetry (top left) and plate von Mises stresses (bottom).[/caption] [/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR SUMMARY

[/vc_column_text][vc_custom_heading text="In this 3-part, pre-recorded 40-minute webinar we will present how the automeshing enhancements now available in StressCheck v11.1 significantly aid in the rapid generation of penta- and hexa-dominant meshes for use in 3D multi-body contact applications. To realize these concepts in a practical setting, a 3D splice joint assembly will be constructed, analyzed and post-processed, with detailed commentary on each step in the workflow process." font_container="tag:p|text_align:left" use_theme_fonts="yes"][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR HIGHLIGHTS

[/vc_column_text][vc_column_text]Part 1: Model Definition & Parametric Geometry Construction
  • Problem definition, scope and use of symmetry to reduce model size
  • Importation of a parameter file (.par)
  • Construction of 3D parametric solid bodies (boxes, cylinders, cones, etc.)
  • Boolean union/subtraction operations between 3D solid bodies to define 3D splice joint parts
  • Copy operations to duplicate child fastener bodies from a single parent fastener body
  • Body-to-body imprints between all parts for optimization of contacting surfaces
  Part 2: Part Definition, Contact Zone Setup, Mixed Mesh Generation, Material Properties & Boundary Conditions
  • Creation of Parts for efficient bookkeeping and visualization
  • Generation of the solid mixed meshes for each Part via Global, Boundary Layer and Thin Section automesh methods
  • Creation of contact zones for Part regions expected to be in contact
  • Definition and assignment of material properties to each Part
  • Assignment of boundary conditions (loads and constraints) to each Part
  • Assignment of contact pairs to allow gap and pressure computations between Part contact zones
  Part 3: Solution Setup, Execution and Post-Processing
  • Linear multi-body contact solution setup and initiating the solver
  • Evaluation of max contact pressure error, solve time and degrees of freedom solved (DOF)
  • Plotting the deformation of the 3D splice joint assembly
  • Plotting of von Mises stresses for each Part in the 3D splice joint assembly
  • Unaveraged vs. averaged von Mises stresses for each plate Part
  • Computing the stress resultants to ensure quality load transfer between Parts
  • Summary and wrap-up
[/vc_column_text][/vc_column][/vc_row]]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Demo: Thermo-Mechanical Analysis with Temperature-Dependent Material Properties https://www.esrd.com/resource-library/product/stresscheck-demo-thermo-mechanical-analysis-with-temperature-dependent-material-properties/ Wed, 18 Jan 2023 19:10:09 +0000 https://www.esrd.com/?post_type=product&p=27037 Abstract: A thermo-mechanical (Heat Transfer -> Elasticity) analysis is performed for a Handbook model of two Inconel 718 connected pipes connected by a thin fin (\Handbook\Tutorial\ConnectedPipes.scw). The parametric Handbook model contains formula-based, temperature-dependent coefficients of thermal conductivity (when the theory is Heat Transfer) as well as formula-based, temperature-dependent linear isotropic material properties (when the theory is Elasticity). The goals of the thermo-mechanical analysis are to:
  • Compute the linear (coefficient of thermal conductivity for a reference temperature T=200 °F) and material nonlinear (coefficient of thermal conductivity is allowed to be temperature-dependent) temperature distributions via steady-state conduction heat transfer
  • Apply the temperature distribution computed from the material nonlinear solution as a thermal load for all elements using a reference temperature of 0 °F
  • Solve a linear elastic solution using the thermal load, symmetry/rigid body constraints, and temperature-dependent linear isotropic properties
  • Extract the local stresses at the intersection of the fin and the pipes.
  For the steady-state conduction heat transfer analysis, the following boundary conditions are assigned:
  • Cooling of the external pipe surfaces is by convection via parameters "Hc" (convective film coefficient) and  "Tc"(convective temperature).
  • The left pipe inside temperature is given by parameter "To", and the right pipe inside temperature is given by parameter "Tp".
  For the linear elastic analysis, the following boundary conditions are assigned:
  • Thermal loading of the connecting pipes + fin is defined by importing the temperatures from the material nonlinear steady state conduction heat transfer solution.
  • Double-symmetry conditions are used to model 1/4 of the connecting pipes + fin.
  • A nodal constraint in the global X direction restricts rigid body translation.
 ]]>

Hit the play button to view this video. You may maximize the video to fit your screen.

]]>
StressCheck Tutorial: Parametric TLAP Case ID Scaling Overview https://www.esrd.com/resource-library/product/stresscheck-tutorial-parametric-tlap-case-id-scaling-overview/ Wed, 12 Oct 2022 20:45:18 +0000 https://www.esrd.com/?post_type=product&p=26193 Abstract: demonstration of parameter-based scaling for TLAP Case ID's. Essential for representing arbitrary scaling and reversals of imported TLAP forces/moments via one or more parameters. The parametric TLAP scaling option is available as of StressCheck v11.1. For more details, refer to Total Load at a Point (TLAP) Implementation.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Tutorial: Crack Front Automeshing with Mixed Mesh, Integration Layer and Grade Toward Ends Options https://www.esrd.com/resource-library/product/stresscheck-tutorial-crack-front-automeshing-with-mixed-mesh-integration-layer-and-grade-toward-ends-options/ Fri, 07 Oct 2022 20:21:47 +0000 https://www.esrd.com/?post_type=product&p=26168 Abstract: demonstration of the enhanced Crack Front automesh method for generation of mixed (tetra/penta/hexa) boundary layers around crack front curves, with options for an additional integration layer as well as grading toward the crack tips. The mixed Crack Front automesh method is available as of StressCheck v11.1. For more details, refer to MeshSim Automesh Generation Methods.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Tutorial: Mixed (Hexa/Penta) Boundary Layer Automesh Refinement https://www.esrd.com/resource-library/product/stresscheck-tutorial-mixed-hexa-penta-boundary-layer-automesh-refinement/ Thu, 06 Oct 2022 13:52:58 +0000 https://www.esrd.com/?post_type=product&p=26151 Abstract: demonstration of the enhanced Boundary Layer automesh method for generation of mixed (tetra/penta/hexa) element layers around holes, blends, fillets and other regions of interest, with or without the "shrink-to-fit" option. The mixed Boundary Layer automesh method is available as of StressCheck v11.1. For more details, refer to MeshSim Automesh Generation Methods.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>