Resultant Extraction Archives - ESRD https://www.esrd.com/product-tag/resultant-extraction/ Engineering Software Research and Development, Inc. Thu, 12 Sep 2024 15:14:46 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://www.esrd.com/wp-content/uploads/cropped-SC_mark_LG72ppi-32x32.jpg Resultant Extraction Archives - ESRD https://www.esrd.com/product-tag/resultant-extraction/ 32 32 StressCheck Tutorial: New Assembly Meshing/Auto Contact Features in StressCheck v12.0 https://www.esrd.com/resource-library/product/stresscheck-tutorial-new-assembly-meshing-auto-contact-features-in-stresscheck-v12-0/ Wed, 11 Sep 2024 20:11:43 +0000 https://www.esrd.com/?post_type=product&p=32645 A new and powerful assembly automeshing/automatic contact detection feature is now available with the release of StressCheck v12.0. Before automeshing an assembly of close-contacting solid bodies, users may enable the "Assembly Meshing" option to enforce element face matching between neighboring surfaces (to within a user-specified tolerance). Once the solid bodies have been automeshed, StressCheck will automatically create contact zones between matched neighboring element faces and assign contact pairs via the new Auto Contact constraint method to the current constraint ID (if existing, otherwise StressCheck will use "AUTO_CONT" as the constraint ID). Individual contact pairs generated via the Auto Contact method may specified as Contact (the default, traditional multi-body contact), Fused (if element face matching was 100% successful, matched element faces are bonded) or Free (matched element faces are free). Note that if individual contact pairs are specified as Contact, and a parameter is not used for the Contact Constant, the Contact Constant value is computed from the assigned material property data and will be updated if one or more of the material properties are modified. This tutorial revisits a previous 3D multi-body contact example and utilizes assembly automeshing/automatic contact detection to significantly reduce the amount of setup time for multi-body contact analysis. The tutorial also demonstrates how refining the automesh (or updating a parameter value which triggers a re-mesh) will result in the re-generation of the contact zones/contact pairs.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
Experimental Validation of DTA Modeling of Bonded Wing Skin Repairs https://www.esrd.com/resource-library/product/experimental-validation-of-dta-modeling-of-bonded-wing-skin-repairs/ Thu, 07 Dec 2023 16:41:37 +0000 https://www.esrd.com/?post_type=product&p=30469 Abstract: This presentation is a follow-up to ESRD’s 2022 ASIP presentation titled “DTA of Bonded Repairs on the Wing Skin of the C-130 Using Finite Elements.” That presentation explored a robust method for finite element analysis of bonded skin repairs from the perspective of both static strength and fatigue crack growth. The proposed analysis methodology was presented in a comparative sense, examining a number of criteria in the skin in an undamaged state, a damaged state and a repaired state, in order to allow the analyst to make an assessment of repair effectiveness without detailed knowledge of either the exact boundary conditions of the problem, or of the intricacies of the model itself. One of the criteria for a patch to be deemed effective is that the fatigue life of the skin be at or above that of the pristine configuration. Given the sparse nature of research on the topic of crack growth under bonded repair patches, ESRD partnered with AP/ES to conduct an experimental program to investigate in detail how a small initial flaw propagates in the aluminum skin under a titanium repair up through failure. Experiments were performed alongside blind predictions of life and crack morphology using ESRD’s research tool, CPAT. Additionally, statistical analysis was performed to assess confidence in the predictions. Given the aleatory uncertainty associated with the available crack growth data for the specimen material, it was important that predictions of fatigue life be accompanied by a confidence level when comparing them with experimental outcomes. Because most of the crack propagation occurred under the repair, a marker band spectrum was used during the test and the crack-cycle data was constructed from fractographic examination. The experimental program covered three specimen configurations: (1) Undamaged skin with a surface crack or a corner crack at a hole; (2) Skin with a grindout (to remove hypothetical corrosion damage) and either a surface crack at the bottom of the grindout or a corner crack at a hole located at the center of the grindout; (3) Same as configuration (2) but including a bonded titanium repair. Experimental and predicted results will be presented. Originally presented as a technical paper at the 2023 ASIP conference in Denver, CO.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
ASIP 2023 Training – Enhancements in StressCheck v12.0 for DaDT Analysis of 3D Fastened Connections https://www.esrd.com/resource-library/product/asip-2023-training-enhancements-in-stresscheck-v12-0-for-dadt-analysis-of-3d-fastened-connections/ Thu, 07 Dec 2023 15:55:57 +0000 https://www.esrd.com/?post_type=product&p=30457 Abstract: this 2-hour training course, originally presented at the ASIP 2023 conference in Denver, CO, explored the following topics:
  • StressCheck’s FEA technology implementation for the modeling, meshing and analysis of arbitrarily shaped 3D crack geometries, with and without the local effects of multi-body contact.
  • Strategies for automatic meshing of 3D cracks with high-aspect ratio, 3D-solid pentahedral and hexahedral elements to support high-quality SIF extractions at any location on the crack front.
  • New StressCheck 12.0 method to support multi-body contact assembly meshing, auto-detection of contact regions, and automatic assignment of contact pairs for 3D solid bodies.
]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Demo: 2D Splice Joint Case Study https://www.esrd.com/resource-library/product/stresscheck-demo-2d-splice-joint-case-study/ Fri, 02 Jun 2023 16:15:21 +0000 https://www.esrd.com/?post_type=product&p=28320 Abstract: demonstration of how to quickly setup and analyze a 2D splice joint configuration using quads, tris, fasteners and links. Additionally, the influence of the link shear stiffness (Ks) on the splice joint stresses and fastener reactions will be assessed.]]>

Hit the play button to view this video. You may maximize the video to fit your screen.

]]>
Webinar: Benefits of Mixed Meshing for Multi-Body Contact Applications https://www.esrd.com/resource-library/product/webinar-benefits-of-mixed-meshing-for-multi-body-contact-applications/ Mon, 13 Mar 2023 20:42:18 +0000 https://www.esrd.com/?post_type=product&p=27441 [vc_row][vc_column width="1/2"][vc_message message_box_color="peacoc" icon_fontawesome="fa fa-lightbulb-o"]March 13, 2023 @ 1:00 pm EST[/vc_message][vc_column_text]Strategies for incorporating advanced mixed (hexa/penta) automeshing techniques for improved quality and efficiency of 3D multi-body contact applications will be explored.[/vc_column_text][vc_cta h2="" add_button="right" btn_title="WATCH NOW" btn_color="danger" btn_link="url:%23recording|||"]This webinar is now available to watch on-demand.[/vc_cta][/vc_column][vc_column width="1/2"] [caption id="attachment_27442" align="alignnone" width="1166"] 3D Splice Plate problem definition (top right), mixed mesh taking advantage of symmetry (top left) and plate von Mises stresses (bottom).[/caption] [/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR SUMMARY

[/vc_column_text][vc_custom_heading text="In this 3-part, pre-recorded 40-minute webinar we will present how the automeshing enhancements now available in StressCheck v11.1 significantly aid in the rapid generation of penta- and hexa-dominant meshes for use in 3D multi-body contact applications. To realize these concepts in a practical setting, a 3D splice joint assembly will be constructed, analyzed and post-processed, with detailed commentary on each step in the workflow process." font_container="tag:p|text_align:left" use_theme_fonts="yes"][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR HIGHLIGHTS

[/vc_column_text][vc_column_text]Part 1: Model Definition & Parametric Geometry Construction
  • Problem definition, scope and use of symmetry to reduce model size
  • Importation of a parameter file (.par)
  • Construction of 3D parametric solid bodies (boxes, cylinders, cones, etc.)
  • Boolean union/subtraction operations between 3D solid bodies to define 3D splice joint parts
  • Copy operations to duplicate child fastener bodies from a single parent fastener body
  • Body-to-body imprints between all parts for optimization of contacting surfaces
  Part 2: Part Definition, Contact Zone Setup, Mixed Mesh Generation, Material Properties & Boundary Conditions
  • Creation of Parts for efficient bookkeeping and visualization
  • Generation of the solid mixed meshes for each Part via Global, Boundary Layer and Thin Section automesh methods
  • Creation of contact zones for Part regions expected to be in contact
  • Definition and assignment of material properties to each Part
  • Assignment of boundary conditions (loads and constraints) to each Part
  • Assignment of contact pairs to allow gap and pressure computations between Part contact zones
  Part 3: Solution Setup, Execution and Post-Processing
  • Linear multi-body contact solution setup and initiating the solver
  • Evaluation of max contact pressure error, solve time and degrees of freedom solved (DOF)
  • Plotting the deformation of the 3D splice joint assembly
  • Plotting of von Mises stresses for each Part in the 3D splice joint assembly
  • Unaveraged vs. averaged von Mises stresses for each plate Part
  • Computing the stress resultants to ensure quality load transfer between Parts
  • Summary and wrap-up
[/vc_column_text][/vc_column][/vc_row]]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
DTA of Bonded Repairs on the Wing Skin of the C130 Using Finite Elements https://www.esrd.com/resource-library/product/dta-of-bonded-repairs-on-the-wing-skin-of-the-c130-using-finite-elements/ Thu, 08 Dec 2022 18:01:39 +0000 https://www.esrd.com/?post_type=product&p=26592 Abstract: Current methodologies for the design and application of repairs to damaged sections of aircraft wing skin can be lacking in analytical support, relying instead on accumulated practical experience to determine the effectiveness of a given patch design. These methods are, by their nature, effective, being based on observation, but inefficient, requiring a knowledge base acquired over years of experience. This can make sustainment organizations inflexible and vulnerable to gaps in knowledge between newer members and more seasoned experts. This approach is also problematic in its potential for wasted effort and material, applying repairs that may be more intensive than is required for a given situation. These problems can all be addressed by the introduction of an accessible, robust analysis methodology cast in the form of an Engineering Simulation Application for the verification of a repair’s performance qualities prior to an actual aircraft application. The finite element method is ideally suited to provide an analysis procedure for this type of problems that can be used by analysts with widely varying degrees of expertise both in numerical simulation and bonded repair application. This presentation will outline a proposed methodology for utilizing finite element analysis to assess the effectiveness of a given bonded repair. Originally presented as a technical paper at the 2022 ASIP conference in Phoenix, AZ.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
StressCheck Tutorial: Multi-Body Contact Analysis of a Block and Half-Cylinder https://www.esrd.com/resource-library/product/stresscheck-tutorial-multi-body-contact-analysis-of-a-block-and-half-cylinder/ Wed, 21 Sep 2022 14:13:34 +0000 https://www.esrd.com/?post_type=product&p=26087 Abstract: indenter-style problem of a block and loaded half-cylinder in multi-body contact is analyzed. The following tips and best practices will be explored:
  • Optimization of geometric surfaces for efficient multi-body contact.
  • Creation of contact zones on optimized surfaces.
  • Selection of the appropriate contact constant based on configuration (area in contact, material properties, load magnitude, etc).
  • Cancellation of rigid body translations/rotations.
  • Multi-body contact solution setup.
  • Assessment of final gap for penetration.
  • Assessment of contact pressure gradient continuity.
  • Assessment of load transfer via stress resultant extraction.
  • Mesh refinement with mixed boundary layers to improve contact pressure gradient.
  For more details, refer to Multi-Body Contact Overview and Numerical Simulation Series: Mechanical Contact.]]>

Hit the play button to view this video. You may maximize the video to fit your screen.

]]>
StressCheck Tutorial: Multi-Body Contact Solver Options/Plot Functions https://www.esrd.com/resource-library/product/stresscheck-tutorial-multi-body-contact-solver-options-plot-functions/ Fri, 22 Jan 2021 16:30:44 +0000 https://esrd.com/?post_type=product&p=19128 Abstract: with the release of StressCheck v11, solver settings for models with active contact zones (Iteration Limit, Pressure Tolerance, Ray Tolerance) and functions for plotting contact pressure, initial gap and final gap are now available to provide more control and feedback for multi-body contact analyses.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>
Webinar: Introduction to Multi-Body Contact in StressCheck https://www.esrd.com/resource-library/product/webinar-intro-to-contact/ Tue, 23 Jun 2020 19:55:12 +0000 https://www.esrd.com/?page_id=26876 [vc_row][vc_column width="1/2"][vc_message message_box_color="peacoc" icon_fontawesome="fa fa-lightbulb-o"]June 23, 2020 @ 1:00 pm EST[/vc_message][vc_column_text]Strategies for modeling, solving & post-processing 3D multi-body contact applications in StressCheck Professional, along with implementation details & troubleshooting recommendations, will be explored.[/vc_column_text][vc_cta h2="" add_button="right" btn_title="WATCH NOW" btn_color="danger" btn_link="url:%23recording|||"]This webinar is now available to watch on-demand.[/vc_cta][/vc_column][vc_column width="1/2"][vc_single_image image="15252" img_size="full" alignment="center"][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR SUMMARY

[/vc_column_text][vc_custom_heading text="In this pre-recorded 2 hour webinar we will review the scope, typical applications, model setup, best practices, quality assurance checks, troubleshooting recommendations, and algorithmic details for StressCheck's multi-body contact implementation." font_container="tag:p|text_align:left" use_theme_fonts="yes"][/vc_column][/vc_row][vc_row][vc_column][vc_column_text]

WEBINAR HIGHLIGHTS

[/vc_column_text][vc_column_text]Introduction to Multi-Body Contact: Part 1
  • Overview of scope and supported problem classes
  • "How It Works"
  • Sample multi-body contact applications & use cases (e.g. fastened connections, fittings, splice joints, etc.)
  • Setting up a model for multi-body contact & checking solution quality
  • End-to-End (E2E) Demo: 3D Fork Fitting Analysis
Introduction to Multi-Body Contact: Part 2
  • Implementation details & FAQ's
  • Contact algorithm: theory & application
  • Recommendations & best practices
  • Troubleshooting common issues
  • ESRD Website Resources
[/vc_column_text][/vc_column][/vc_row]]]>

WATCH THIS WEBINAR

Part 1: Overview & Applications, E2E Demo

Part 2: Implementation Details & FAQ’s

Want to Set Up an Instructor-Led Training?

Click the below button to get a quote for an on-site, off-site or web-based training course:

Request Training ]]>
StressCheck Tutorial: Fitting + I-Beam Multi-Body Contact Analysis https://www.esrd.com/resource-library/product/stresscheck-tutorial-fitting-i-beam-multi-body-contact-analysis/ Wed, 22 Apr 2020 18:36:54 +0000 https://esrd.com/?post_type=product&p=13693 Abstract: Modeling of a 3D solid part assembly of a fork-type fitting connected to an I-Beam section with four (4) fastener shanks.]]>
You need to be logged in to view this content. Please Log in. Not a member? Register.
]]>