The Cold Working Solver is perfect for a quick assessment of the 2D residual stresses after cold working a single hole via mandrel insertion/removal. The modeling requirements are minimal from the analyst, with the cold work process integrated within the Cold Working Solver. All that is specified by the user is which hole is cold worked, the definition of an elastic-plastic material, the mandrel material properties and the mandrel interference.
Cold Working Solver
The Cold Working Solver is an automated Planar analysis tool that simulates the cold working process via superposition and provides the analyst with the residual state of stress resulting from pulling an oversize mandrel through a fastener hole. It is intended to provide a fast and accurate solution for when reverse plasticity is not a concern. For cases of reverse plasticity, it is recommended to use the Non-Linear Solver.
Key Features and Advantages
There is minimal input required for the solver setup:
- The hole ID to be cold worked
- The mandrel material ID
- The mandrel diametric interference
Each of these solutions is available for post-processing.
- Mandrel insertion (local plasticity around the hole).
- Mandrel removal (CW residual stress).
- Final state of stress (CW residual + applied load).
The Cold Working Solver utilizes superposition to combine the effects of the loads and constraints with the effects of the cold working operation. The following steps describe a typical cold working analysis:
- Determination of the plastic zone due to mandrel insertion.
- Determination of the residual stresses due to mandrel removal.
- The solution corresponding to any specified loads.
- The combined solution, utilizing superposition, of the residual stresses and the specified loads.
Looking for Resources?
Recent News & Events
Quick Links
Testimonials
-
“The p-type element has been used to great advantage in the finite element system ESRD StressCheck, [26]. This software provides the engineer with the means to conduct solution verification in an extremely straightforward manner by simply increasing the degree of the element, monitoring convergence and using Richardson extrapolation reliably to estimate the error. This can be conducted automatically by the software thereby enabling the engineer to concentrate on the engineering rather than the simulation. StressCheck has also been used to develop ESRD’s Handbook and Toolbox applications. The first of these provides engineers with a repository of parameterised standard problems of the type found in texts like Roark’s “Formulas for Stress and Strain”, [27]. The second, Toolbox, is a tool that can be used to parameterise a company’s range of components for rapid and reliable analysis by non-expert analysis. Toolbox then is an exemplary of the way in which the democratisation of simulation can be applied.”
Angus Ramsay, PhD
Engineering Director, Ramsay Maunder Associates