StressCheck Professional supports a wide variety of solvers, including linear, multi-body contact, nonlinear (material and large deformation), modal/buckling, steady state heat transfer, and more.
Solvers
What’s more, the same mesh can be seamlessly applied to any solver. No element updating. This makes StressCheck capable of true hierarchic modeling, releasing the burden of tedious element selection from users.
Provides capability for a broad range of solutions in linear elasticity. Supports planar, extrusion, axisymmetric, and 3D reference frames. Multi-body contact capabilities are also included, with no limitations on the number of contacting bodies. Multiple solutions can be obtained for the same mesh and convergence in the data of interest can be checked by increasing the number of degrees of freedom (DOF) by p-extension.
Simulation of large deformation, large strain and plasticity effects. Support for nonlinear events to represent cold working and overload/unload/re-load processes. Transition seamlessly from a linear to a non-linear solution process due to the hierarchic simulation structure. Elastic-plastic multi-body contact analysis is also supported.
Allows robust computation of the eigenvalues, as well as the associated mode shapes, for modal (natural frequency) or buckling (load factor) problems. Provide a distinct advantage for eigenvalue and mode shape computation, as locking effects are minimized. Modal analysis can account for pre-stress effects. Buckling analysis can account for pre-load.
Accurately predict the in-plane residual stresses around a single hole caused by mandrel insertion (overload). Removal accounts for subsequent re-loading through linear superposition. Using a simple and intuitive user interface, the user can easily execute a cold work analysis with minimal training and receive feedback regarding the outcome. If it is necessary that multiple holes be cold worked, the Non-Linear solver should be utilized.
Perform margin of safety computations within a non-linear load step solution procedure. Reliable and accurate approach that transcends limitations such as part complexity, non-linearities, and failure criteria, inherent in closed-form solutions and empirically-derived methods. Provides global error estimations and local convergence plots of any quantity of interest.
Perform linear, steady-state heat transfer analysis for metallic and composite bonded structures. Also allows for radiation boundary conditions for non-linear effects, temperature-dependent materials and ability to convert a heat transfer solution into input for a thermo-elastic solution.
Looking for Resources?
Recent News & Events
Quick Links
Testimonials
-
“The p-type element has been used to great advantage in the finite element system ESRD StressCheck, [26]. This software provides the engineer with the means to conduct solution verification in an extremely straightforward manner by simply increasing the degree of the element, monitoring convergence and using Richardson extrapolation reliably to estimate the error. This can be conducted automatically by the software thereby enabling the engineer to concentrate on the engineering rather than the simulation. StressCheck has also been used to develop ESRD’s Handbook and Toolbox applications. The first of these provides engineers with a repository of parameterised standard problems of the type found in texts like Roark’s “Formulas for Stress and Strain”, [27]. The second, Toolbox, is a tool that can be used to parameterise a company’s range of components for rapid and reliable analysis by non-expert analysis. Toolbox then is an exemplary of the way in which the democratisation of simulation can be applied.”
Angus Ramsay, PhD
Engineering Director, Ramsay Maunder Associates